Geometry of Maurer-Cartan Elements on Complex Manifolds
نویسندگان
چکیده
منابع مشابه
Geometry of Maurer-Cartan Elements on Complex Manifolds
The semi-classical data attached to stacks of algebroids in the sense of Kashiwara and Kontsevich are Maurer-Cartan elements on complex manifolds, which we call extended Poisson structures as they generalize holomorphic Poisson structures. A canonical Lie algebroid is associated to each Maurer-Cartan element. We study the geometry underlying these Maurer-Cartan elements in the light of Lie alge...
متن کاملGeometry of product complex Cartan manifolds
In this paper we consider the product of two complex Cartan manifolds, the outcome being a class of product complex Cartan spaces. Then, we study the relationships between the geometric objects of a product complex Cartan space and its components, (e.g. Chern-Cartan complex nonlinear connection, Cartan tensors). By means of these, we establish the necessary and sufficient conditions under which...
متن کاملComplete Cartan Connections on Complex Manifolds
Complete complex parabolic geometries (including projective connections and conformal connections) are flat and homogeneous.
متن کاملThe Maurer-Cartan structure of BRST differential
In this paper, we construct a new sequence of generators of the BRST complex and reformulate the BRST differential so that it acts on elements of the complex much like the Maurer-Cartan differential acts on left-invariant forms. Thus our BRST differential is formally analogous to the differential defined on the BRST formulation of the Chevalley-Eilenberg cochain complex of a Lie algebra. Moreov...
متن کاملGeneration properties of Maurer-Cartan invariants
For the action of a Lie group, which can be given by its infinitesimal generators only, we characterize a generating set of differential invariants of bounded cardinality and show how to rewrite any other differential invariants in terms of them. Those invariants carry geometrical significance and have been used in equivalence problem in differential geometry. http://hal.inria.fr/inria-00194528...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Mathematical Physics
سال: 2010
ISSN: 0010-3616,1432-0916
DOI: 10.1007/s00220-010-1029-4